Wednesday, October 21, 2009

Adventures in prehistoric animal reconstructions - A preview of a new reconstruction by Carl Buell of a new desmostylian from Vancouver Island!

Last summer (2008) I went to Victoria, British Columbia, to work on a new specimen (collected on my birthday in the summer of 2007) of a desmostylian that came from a locality similar to the type locality of Cornwallius sookensis. Joan Kerik, the Collection Manager (an extraordinary one at that) at the Royal British Columbia Museum in Victoria had contacted me a couple of year before regarding Cornwallius, which was something I was working on at the time (just now published in JVP). Eventually when this new material came up which we all expected would be Cornwallius, she connected me with Thomas Cockburn, a Research Associate that specializes in the Sooke Formation invertebrate fauna.
Tom took me to the locality, as well as the type locality of Cornwallius sookensis, Muir Creek. We had an extraordinary time, saw deer eating algae on the rocky intertidal and a bear eating something dead in the intertidal as well. At the new locality we came across only a little new specimen, this time a caudal vertebrae of a cetacean (remember this is Late Oligocene, so it could be from any number of weird cetaceans of the time). But no more desmostylian. Still, I happily had spent the prior two days studying this partial skeleton already in the museum, which includes half a skull and its teeth (except the incisors), a partial scapula, most of a humerus, and most of the vertebrae and ribs. The skull was quite interesting, because it looked very much like the skull of Cornwallius, yet the teeth looked like a smaller version of Behemotops. Behemotops is not known from much of its skull other than the posterior portion (B. katsuiei from Japan - Inuzuka 2001), and the new specimen does is throw much of that out, revising the relationships of the two main clades of Desmostylia and suggesting that Behemotops is more like Cornwallius and Desmostylus than previously asserted.
So, Tom and I are currently working on the manuscript and I asked my friend, Carl Buell if he could draw this new animal so we could submit it as a possible cover for JVP. He is still not finished with the final illustration with a background and all, but I thought it would be nice to share the final draft of what we came up with of what the animal should look like (with a neutral background). Carl said I could post this, but if you have any questions about its use, I would contact him. While you are at it, you should check out his Flick'r page. The only thing that trumps the quality of Carl's illustrations is how wonderful and generous a friend he is.
I hope you enjoy this - for more you'll just have to wait for the paper to come out (here's where I shouldn't, but will, suggest that you urge JVP editors to move fast - I'm just kidding!!!).

Wednesday, October 14, 2009

the problem with microwear #1 (of many to come)....or... "if seacows eat seagrass, why can't we consider them grazers?"

Although I haven't published as much as I would like on the subject yet, many of you that know me know that I have spent an inordinate amount of my research life focused on the study of microscopic damage to tooth surfaces, known as dental microwear. Most of this has been focused on marine mammals, particularly members of the Sirenia and Desmostylia, although most members of these groups are extinct. I presented one of the more thorough studies of dental microwear in modern and some fossil Sirenia at the Society of Vertebrate Paleontology meeting in Bristol, UK this year.

But, to give some insight into the reality of such work, the sort that makes me pull my graying hair out, I thought I would share here. WARNING, I may rant about the flawed science of many microwear studies, but only to highlight the complexity of the problem, I do NOT intend this as a criticism of my valued colleagues endeavoring to get to the answers of a VERY complicated, messy bit of science. They deserve credit for having the guts to put it out there, knowing that in the end they will inevitably fall short of the full story - that's the way science goes, sorry everybody. I learned this perhaps a bit too late, but just get used to it and publish!

See, I digressed already!

Ok, so the problems with dental microwear are many, many, many.... but among other things, many folks attempt to apply systems of ecology to many groups of animals across large fields of diversity (and hence, morphology, physiology, and evolutionary background). The classic is the idea of the hippo-ecomorph. There are many fossil mammals with large bodies and short limbs, such as Teleoceras, Coryphodon, etc., that commonly get lumped into being hippo-like in their morphology (which is superficially true) AND lifestyle (which is rarely, if EVER supported by data). The anecdotal comparisons with hippos that most paleontologists make usually only serve to demonstrate their ignorance of modern hippo ecology (being noctural grazers with little to no social system, only found in groups because of their reliance on a scarce resource - water). But nonetheless, you will still find references of Teleoceras as a hippo ecomorph in textbooks and such, even though several thorough studies have shown that the only evidence potentially telling about this indicates that they were very much NOT like hippos.

So how does this relate to dental microwear? In the strange world of classic microwear (excluding some more elaborate confocal microscope-using methods), there is:
  1. an SEM method that visualizes very small portions of the tooth at a high magnification
  2. a light microscopy method that visualizes a larger area of the tooth at a lower magnification
The differences in these methods are great, but the basic idea is that teeth incur damage from what they eat (or more likely, the dirt that is on whatever they are eating), and the small bits of damage can be characterized in different ways that roughly correlate to different diets of grass, browse, or a mix of both.

BUT, as anyone that has ever raised an herbivorous mammal, had a garden, or even made a salad understands, not even the simplest diets can be broken down that simply AND not a single animal on this planet (except for maybe the koala) can ever be described as being a strict consumer of a single plant type. Plants come in all shapes and sizes, as well as all sorts of material properties and abrasiveness. The general notion that the silica nodules, known as phytoliths, that are found to surround vascular bundles in grasses are the cause of the scratchy wear in grazers itself is an example of this issue. Not only have phytoliths been demonstrated to not all have the hardness needed to wear enamel (Sanson, 2007), but many plants that do not have phytoliths wear enamel in very similar patterns. The best example I know are seagrasses and the wear found on the teeth of manatees, Trichechus manatus. Manatees eat a lot of seagrass, yet not a single seagrass has phytoliths inside, so what causes the wear? My research on this of late has pointed in the direction of substrate, specifically siliclastic substrate that some seagrasses like to grow in. In the end, the simple answer to the question of what causes wear is that for seacows, it isn't phytoliths. For all animals in general, it might be better put as - consider all the options before you rule any single thing out, and consider the system at hand. In the end, the data for one ecosystem may ultimately NOT be comparable to another for just this reason.

I will try to continue these rants to cover other aspects of microwear, including issues with methodologies, assumptions, dietary interpretations, and the ever-persistent attempts to apply microwear to fossil organisms, including dinosaurs, despite clear differences in mastication, ecology, etc that should act as BIG warning labels to most people that microwear should not, could not, and cannot be applied in the same way for every animal that ever wore a tooth. The simple notion of using data from one study and comparing it with that of another is a complex matter that needs addressing as well, so I will try to bring it up here as well.

So much to do, so little time! Thanks for your patience and time.
Brian